
Lecture 19: BLR Linearity Testing
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Problems. J. Comput. Syst. Sci. 47(3): 549-595 (1993)
Manuel Blum, Michael Luby, Ronitt Rubinfeld:
Self-Testing/Correcting with Applications to Numerical
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Setting

Our objective is to study functions with boolean output
f : {0, 1}n → {+1,−1}
Consider the following definition of linear functions

Definition (Linear Function)

A function f : {0, 1}n → {+1,−1} is a linear function if, for all
x , y ∈ {0, 1}n, we have f (x + y) = f (x) · f (y).

Note that the function χS is linear, for any S ∈ {0, 1}n. In
fact, we can prove (by induction) that these are the only linear
functions. That is, if f is a linear function then f is identical
to χS , for some S ∈ {0, 1}n

Objective. We want to test, given an oracle access to a
function f , whether f is close to a linear function or not. That
is, we want to test whether a given function f agrees with χS ,
for some S ∈ {0, 1}n, at a large fraction of inputs
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BLR Linearity Testing Algorithm

Blum-Luby-Rubinfeld algorithm is presented below

BLRf

1 Pick random x , y
$←{0, 1}n

2 Return f (x) · f (x) == f (x + y)

We emphasize that this algorithm has an oracle access to the
function f . That is, it can only study the function f ’s
input-output behavior
Our objective is to prove that “f is close to linear” if and only
if “the probability of BLRf outputting true is close to 1”
Note that observing one output of the BLRf algorithm to be
true does not certify that the function f is linear (or, close to
linear)!
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Proof Overview

We shall state a few useful results (without proof) and prove
our main theorem based on these results
Finally, to complete the proof, we shall prove these (unproven)
results
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Useful Results

Result 1: Characterization of Boolean Functions∑
T∈{0,1}n

f̂ (T )2 = 1

Result 2: Characterization of “close-to-linear functions”

Lemma
A function f : {0, 1}n → {+1,−1} agrees with some linear function
at > (1− ε) fraction of the inputs, if and only if there exists
S ∈ {0, 1}n such that f̂ (S) > (1− 2ε).

Result 3: Characterization of “P
[
BLRf = true

]
”

Lemma

P
[
BLRf = true

]
=

1+
∑

T∈{0,1}n f̂ (T )3

2
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First Direction of the Proof I

We shall show the following theorem

Theorem
If f agrees with a linear function at > (1− ε) fraction of the
inputs, then P

[
BLRf = true

]
> 1− 6ε.

Let us start the proof. Note that f agrees with a linear
function at > (1− ε) fraction of the inputs. So, there exists
S ∈ {0, 1}n such that f̂ (S) > 1− 2ε (By Result 2)
By Result 1, we have

∑
T∈{0,1}n f̂ (T )2 = 1. So, we conclude

that ∑
T∈{0,1}n : T 6=S

f̂ (T )2 = 1− f̂ (S)2 6 1− (1− 2ε)2 6 4ε

That is, we conclude that
∑

T∈{0,1}n : T 6=S f̂ (T )2 is small
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First Direction of the Proof II

Note that
∑

T∈{0,1}n : T 6=S f̂ (T )3 can be negative. However,
we want to show that its magnitude cannot be too large. To
prove this inequality, we need the following mathematical
inequality, which is easy to prove using Jensen’s inequality.

Claim

Let a1, . . . , aK be non-negative numbers such that
∑K

i=1 ai 6 4ε.
Then, the following bound holds

K∑
i=1

a
3/2
i 6 8ε3/2

From this inequality, we conclude that∑
T∈{0,1}n : T 6=S

∣∣∣f̂ (T )3
∣∣∣ 6 8ε3/2
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First Direction of the Proof III

That is, we conclude that∑
T∈{0,1}n : T 6=S

f̂ (T )3 > −8ε3/2

By adding f̂ (S)3 to this expression above, we get∑
T∈{0,1}n

f̂ (T )3 > 1− 4ε− 8ε3/2

By Result 3, we get

P
[
BLRf = true

]
> 1− 2ε− 4ε3/2 > 1− 6ε
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Second Direction of the Proof I

We shall show the following theorem

Theorem

If P
[
BLRf = true

]
> 1− ε then f agrees with a linear function at

> (1− ε) fraction of the inputs

Let us start the proof. If P
[
BLRf = true

]
> 1− ε then by

Result 3 we have ∑
T∈{0,1}n

f̂ (T )3 > 1− 2ε
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Second Direction of the Proof II

Note that ∑
T∈{0,1}n

f̂ (T )3 6
∑

T∈{0,1}n
f̂ (T )2 max

R∈{0,1}n
f̂ (R)

= max
R∈{0,1}n

f̂ (R)
∑

T∈{0,1}n
f̂ (T )2

= max
R∈{0,1}n

f̂ (R)

The last equality uses Result 1.
We know that

∑
T∈{0,1}n f̂ (T )3 > 1− 2ε. So, we conclude

that
max

R∈{0,1}n
f̂ (R) > 1− 2ε

That is, there exists S ∈ {0, 1}n, such that f̂ (S) > 1− 2ε.
By Result 2, f agrees with χS at > (1− ε) fraction of the
inputs
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Proof of Result 1

Note that 〈f , f 〉 = 1, when f : {0, 1}n → {+1,−1}
By Parseval’s identity, we have 1 = 〈f , f 〉 =

∑
T∈{0,1}n f̂ (T )2
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Proof of Result 2

Suppose f agrees with some linear function at ρ fraction of the
inputs. We can conclude that f disagrees with that linear
function at (1− ρ) fraction of the inputs
Since the Fourier basis is the set of all linear functions, we get
that f agrees with χS at ρ fraction of the inputs, for some
S ∈ {0, 1}n

So, we conclude that

f̂ (S) = 〈f , χS〉 =
1
N

(
ρN · 1+ (1− ρ)N · (−1)

)
= 2ρ− 1

Note that ρ > 1− ε if and only if f̂ (S) > 1− 2ε
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Proof of Result 3 I

Suppose that p := P
[
BLRf = true

]
Let us consider the sum

1
N2

∑
x ,y∈{0,1}n

f (x)f (y)f (x + y)

Note that f (x)f (y)f (x + y) = 1 if f (x)f (y) = f (x + y);
otherwise f (x)f (y)f (x + y) = −1.
Equivalently, f (x)f (y)f (x + y) = 1 if BLRf = true for this
choice of x and y ; otherwise f (x)f (y)f (x + y) = −1. So, we
conclude that

1
N2

∑
x ,y∈{0,1}n

f (x)f (y)f (x+y) = p ·1+(1−p) · (−1) = 2p−1
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Proof of Result 3 II

That is

p =
1+ 1

N2

∑
x ,y∈{0,1}n f (x)f (y)f (x + y)

2

So, to prove Result 3, it suffices to prove that

1
N2

∑
x ,y∈{0,1}n

f (x)f (y)f (x + y) =
∑

T∈{0,1}n
f̂ (T )3

To prove this statement, consider a new function
h : {0, 1}n → R.

h(z) =
1
N

∑
x∈{0,1}n

f (x)f (z − x)
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Proof of Result 3 III

First, observe that h = (f ∗ f ), and

1
N2

∑
x ,y∈{0,1}n

f (x)f (y)f (x + y) = 〈h, f 〉

By Plancherel identity, we have

〈h, f 〉 =
∑

T∈{0,1}n
ĥ(T )·f̂ (T ) =

∑
T∈{0,1}n

f̂ (T )2·f̂ (T ) =
∑

T∈{0,1}n
f̂ (T )3

Here we use the fact that ĥ(S) = f̂ (S)2 by properties of
convolution.
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